

Domaine d'utilisation*

Caractéristiques techniques

Botte, amagnétique. Tige: PVC et nitrile. Doublure: viscose.

Semelle: injectée PVC et nitrile.

Coloris: blanc et gris. Pointures: 37 à 47.

Conditionnement: carton de 6 paires Sous-conditionnement: sachet individuel. **Poids:** 810 g (Poids moyen d'une chaussure, pointure 42)

Avantages

Bottes amagnétique.

Souple et résistant grâce à la matière de la tige (PVC/nitrile).

Entièrement étanche pour travailler dans des environnements humides.

Certification

Ce produit est conforme au Règlement (UE) 2016/425 relatif aux Equipements de Protection Individuelle (EPI). Catégorie II. Certifié par Łukasiewicz, organisme notifié n°1439.

EN ISO 20347: 2012 (OB FO SRC)

Téléchargez la déclaration UE de conformité sur http://docssingerfr

NORMES		
EN ISO 20344	Équipement de protection individuelle: Méthodes d'essai pour les chaussures	
EN ISO 20345	Chaussures de sécurité: Embout contre les chocs (200 joules) et contre un écrasement de 15 kN.	
EN ISO 20346	Chaussures de protection: Embout contre les chocs (100 joules) et contre un écrasement de 10 kN.	
EN ISO 20347	Chaussures de travail: Aucune exigence concernant un éventuel embout.	

	RÉSISTANCE AU GLISSEMENT
SRA	Sur surface céramique enduite de détergeant de type industriel
SRB	Sur sol en acier lisse enduit de glycérine
SRC	SRA+SRB

	EN ISO 20345 - EXIGENCES OPTIONNELLES
E	Talon absorbeur d'énergie
Р	Semelle anti-perforation
CR	Tige résistante à la coupure
M	Protecteur du métatarse contre les chocs
С	Chaussures conductrices
Α	Chaussures antistatiques
HI	Semelle isolante contre la chaleur de contact
CI	Semelle isolante contre le froid
HRO	Semelage résistant à la chaleur de contact
WRU	Résistance de la tige contre l'absorption et la pénétration de l'eau
WR	Résistance à l'eau de la chaussure entière
I	Chaussures isolantes
AN	Protection des malléoles

	CLASSE DES MATÉRIAUX UTILISÉS
Classe I	Tout cuir ou autres matières (sauf tout caoutchouc ou tout polymère)
Classe II	Tout caoutchouc (entièrement vulcanisés) ou tout polymère (entièrement moulés)

EN 61340-4-3 - ELECTROSTATIQUE

Les chaussures répondant à cette norme sont dites "dissipatrices". Cette norme définit les chaussures qui permettent de protéger les équipements électroniques d'une décharge électrostatique. Résistance électrique: $< 1 \Omega \times 10^8$. Les chaussures antistatiques ne sont pas forcément ESD.

EN ISO 20345 - CLASSE DE LA CHAUSSURE				
SB	Classe I ou II	Propriétés fondamentales		
S 1	Classe I	Propriétés fondamentales + Arrière fermé + Propriété antistatique + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures		
\$2	Classe I	Propriétés fondamentales + Arrière fermé + Propriété antistatique + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures + Résistance à la pénétration d'eau + Résistance à l'absorption d'eau		
\$3	Classe I	Propriétés fondamentales + Arrière fermé + Propriété antistatique + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures + Résistance à la pénétration d'eau + Résistance à l'absorption d'eau + Résistance à la perforation + Semelle à crampons		
\$4	Classe II	Propriétés fondamentales + Arrière fermé + Propriétés antistatiques + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures		
\$ 5	Classe II	Propriétés fondamentales + Arrière fermé + Propriétés antistatiques + Capacité d'absorption d'énergie du talon + Résistance aux hydrocarbures + Résistance à la perforation + Semelle à crampons		

	AVANTAGES
(e	Résistance aux glissements
W.	Semelle à crampons
· air	Résistance aux hydrocarbures
F	Propriétés antistatiques
000	Embout de sécurité en composite (200J)
2001	Embout de sécurité en acier (200J)
1100N	Semelle antiperforation en textile haute ténacité (1100N)
▲ 1100N	Semelle antiperforation en acier (1100N)
	Résistance à la pénétration de l'eau
∑ _₹	Amortisseur au talon